
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-5, Oct- 2014]

ISSN: 2349-6495

Page | 1

Performance Analysis of Min-Sum LDPC
Decoding Algorithm
S. V. Viraktamath1, Girish Attimarad2

1Department of ECE, SDM College of Engineering and Technology, Dharwad, India

2Department of ECE, Dayanand Sagar College of Engineering, Bangalore, India

Abstract— In this paper the performance of Min-Sum
LDPC algorithm is analyzed. A parallel software
implementation of low density parity check decoding
algorithm is proposed, a modified version of Min-Sum
algorithm (MSA) has been used for the decoding.
Specifically, Open Multi-Processing (OpenMP) for
parallelizing software on a multi-core processor. We
process information on H-matrices using OpenMP
pragmas on a multi-core processor and execute decoding
algorithms in parallel using MATLAB EXecutable (MEX)
function in MATLAB. We evaluated the performance of
the proposed implementation with respect to single-core
processor execution and verified that the proposed
parallel execution reduces the execution time and yields
better results compared to single-core processor
execution.

Keywords— Tanner graph, bit nodes, check nodes,
LDPC Codes, code length.

I. INTRODUCTION

Nowadays everyone uses the electronic gadgets which

support wireless communication. In order to have a

reliable communication error correcting codes must be

used. Error correcting codes basically introduce or insert

redundancy into the transmitted data stream so that the

receiver can detect and possibly correct the errors that

occurred during the transmission. The LDPC codes are

known for their performance.

The LDPC codes are basically linear block codes and are

devised by Gallager in 1960 [1]. IT was difficult to

implement LDPC codes using the technology available.

The LDPC code was revised by Mackay and Neal [2].

The LDPC code can approach the Shannon limit [3].

Furthermore, iterative LDPC decoding schemes based on

the Sum-Product Algorithm (SPA) can fully be

parallelized, leading to high-speed decoding. For these

reasons, LDPC coding is widely regarded as a very

attractive coding technique for high-speed 4G wireless

communications. LDPC codes are used in many

standards, and they support multiple data rates for each

standard. LDPCs are linear (N, K) block codes defined by

parity-check sparse binary H matrices of dimension M

*N, with M =N - K. They are usually represented by

bipartite graphs formed by Bit Nodes (BNs) and Check

Nodes (CNs) and linked by bidirectional edges, also

called Tanner graph [2]. LDPC decoding is based on the

belief propagation of messages between connected nodes

as indicated by the Tanner graph, which demands very

intensive computation running the Sum-Product

Algorithm (SPA), or its simplified variants, namely the

Logarithmic-SPA (LSPA) and the Min- Sum Algorithm

[4]. More flexible solutions for LDPC decoding using

Digital Signal Processors (DSPs) or Software Defined

Radio (SDR) programmable hardware platforms [5] have

already been proposed. OpenMP [6] provides an effective

and relatively straightforward approach for programming

general-purpose multi-cores and was selected under the

context of this work.

Figure 1. The performance of the LDPC-STBC is

analyzed by using Density Evolution (DE). Also, the

irregular LDPC codes for the LDPC-STBC optimized by

using DE. The error rate performance of the optimized

irregular LDPC codes and the regular LDPC codes for the

LDPC-STBC has been analyzed in [7]. The estimation of

Block-LDPC coding system implementation key metrics

including the throughput and hardware complexity for

both encoder and decoder are presented [8]. The use of

low-density parity check (LDPC)-centric error correction

coding (ECC) for magnetic recording read channel in the

presence of significant burst errors is reported in [9].

Since an LDPC code by itself is severely vulnerable to

burst errors due to its soft-decision probability-based

decoding, they focused on LDPC-centric concatenated

coding in which LDPC code is used as inner code. Min-

Sum and Min-Sum with correction factor algorithms are

reviewed [10] and adapted with TS-LDPC codes for

future analog VLSI implementation. Three different

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-5, Oct- 2014]

ISSN: 2349-6495

Page | 2

platforms for simulating the error performance of LDPC-

CCs have been created [11]. The first two platforms are

run on a Central processing Unit (CPU) while the third

one involves the use of a Graphics Processing Unit

(GPU). It has been shown that using GPU can improve

the simulation speed substantially.

Nowadays, LDPC block codes (LDPC-BCs) have been

adopted by several standards such as IEEE 802.16

(WiMAX), IEEE 802.3an (10GBASE-T), and IEEE

802.15.3c. As the counterpart of LDPC-BCs, LDPC

convolutional codes (LDPC-CCs) [12] are more suitable

for streaming video and variable length packets based on

following features: 1) simple encoding process, 2) regular

decoder architecture, 3) powerful decoding performance,

4) flexible code rates. The stochastic computation makes

the decoding of LDPC-Convolutional Codes more

efficient, but the boundary effect of sliding window

causes poor performance [13].

II. REVIEW OF LDPC CODES
Low Density Parity Check codes are a class of linear

block codes corresponding to the parity check matrix H.

Parity check matrix H(N-K)xN consists of only zeros and

ones and is very sparse which means that the density of

ones in this matrix is very low.

Figure 1. Tanner Graph representation.

LDPC codes can be represented effectively by a bi-

partite graph called a “Tanner" graph. A bi-partite graph

is a graph (nodes or vertices are connected by undirected

edges) whose nodes may be separated into two classes,

and where edges may only be connecting two nodes that

residing in the same class. The two classes of nodes in a

Tanner graph are “Variable Nodes or Bit Nodes” and

“Check Nodes”.

 The Tanner graph of a code is drawn according to the

following rule: “Check node fj, j=1,…..N-K is

connected to bit node xi, i=1,……N whenever element hij

in H (parity check matrix) is a one”. Fig. 1 shows a

Tanner Graph made for a simple parity check matrix H. In

this graph each Bit node is connected to two check nodes

(Bit degree = 2) and each check node has a degree of

four.

 As mentioned by Gallager [1], the H-matrix should be

very sparse. It also determines the complexity of the

encoder/decoder. Depending on the platform which is

going to do the encoding/decoding process, this matrix

can be random or structured. The generator matrix is

shown in equation 1. Then the code will be equal to

c=mG.

A. A. Steps for LDPC encoding

• Loading the H matrix

• Finding check-node_ones and variable-node ones

• Enter SNR rnage

• Conversion from dB to decimal

• Defining random data input for encoding

• Generation of code word

• BPSK Modulation

• Addition of noise to the random data

• Transmission for the signal

B. B. Steps for LDPC decoding

• Demodulation

• Decoding the demodulated signal using MSA

• Check node processing

• Variable node processing

• Update APP LLR

 (a posteriori probability, log likelihood ratio)

• Hard decision

• If code word valid then calculate the BER

--(1)

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-5, Oct- 2014]

ISSN: 2349-6495

Page | 3

III. PROPOSED LDPC DECODER USING

OPENMP
Parallelizing an application by using OpenMP resources

often consists in identifying the most costly loops and,

provided that the loop iterations are independent,

parallelizes them via the #pragma omp parallel for

directive. If we analyze the algorithm, we observe that the

check node update can be done in parallel since each row

has no correlation with each other. Also, the bit node

update on each column can be processed in parallel. The

reason we can perform in parallel is that an LDPC

decoding algorithm does not have dependencies in

memory access among the four types of operations. The

MSA algorithm implements the OpenMP for parallelizing

the decoder by following steps

1. Include header file <omp.h>

2. Initialization

3. Compute all the messages associated to all CN‟s and

BN‟s by parallelizing the code by adding OpenMP

Pragma directive and which forks the N threads

specified by the environment.

4. After computation, Master thread joins all child

threads.

5. Perform decoding operations with N threads specified

by the environment using FOR loop.

6. After decoding computation, BER and Frame error

rate (FER) are plotted.

7. End.
IV. RESULTS AND DISCUSSIONS

The simulation study has been carried out for block

lengths 128, 256, 512 and 1024 (lowest, intermediate and

maximum) for constant code rate ½. This section presents

the simulations to demonstrate the performance of Min-

sum LDPC decoder for the different iterations for the

given code length, for different code length. The impact

of the selection of number of iterations has been shown in

the Fig. 2. It is observed that for the fixed block size as

the number of iterations increases the BER decreases.

The impact of selection of code length for five iterations

has been shown in Fig 3. It may be observed that as the

code length increases the performance also improves.

Figure 2.BER performance for block length 128

Figure 3.BER performance for 5 iterations

The performance of min-sum LDPC decoder for

different code length and for different block sizes is

shown in Fig 4. It may be observed that for lower SNRs

there is no significant difference for different code lengths

as well as for the different iterations. For the SNRs above

2.5 it may be observed that as the code length and

iterations increases the performance also improves

significantly. The average of all the three different

iterations for three different code lengths has been plotted

in Fig 5. It may be observed that as the number of

iterations increases and as the code length increases there

is an improvement in the decoding performance.

Figure 4.BER performance for different iterations & CL

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-5, Oct- 2014]

ISSN: 2349-6495

Page | 4

Figure 5.BER performance –average

Fig.6 shows with and without OpenMP, it may be

observed that with open amp the BER performance is also

good compared to serial processing. With OpenMP

parallelism is possible and the time required will be less

as shown in Fig.7. As the number of iterations increases

the performance also improves. As the number of

iterations increases the time required using OpenMp is

less, hence the processing and decoding takes less time.

Fig. 8 shows the execution time of the MATLAB and

OpenMP. It may be observed that using the OpenMP the

time taken is very less. Hence parallel processing helps to

finish the decoding faster.

Figure 6.BER versus Eb/No for code length 128 bits and r=1/2B for

SNR ranging from 0 dB to 5dB with step size 0.5dB and for iteration=

10

Figure 7. Execution time plot for different code length versus time

taken in execution of C and OpenMP platform

Figure 8. Execution time plots for different code length versus time

taken in execution of MATLAB and OpenMP platform

To evaluate the performance of the LDPC decoder, we

compared the performance of three cases: (1) where no

parallelization technique was applied, (2) where only

parallelization utilizing OpenMP was applied, and (3)

Where MATLAB technique is employed.

When the iteration count increased with low SNR

values, the speedup became greater. This is mainly

because of the fact that as the iteration count increases,

the amount of check and bit nodes operation will increase.

Thus, more parallelization can be done, and accordingly

the speedup will also increase. Fig. 7 and Fig. 8 show the

execution time plot for different code length executed in

different platforms. These Figures give clear information

that decoding with OpenMP speedup the execution and

increases throughput of data then compared no

parallelization is applied.

V. CONCLUSION
Owing to the multiple standards and diverse device

function needs of current digital communications,

hardware only implementation may not be cost-effective.

Instead, software implementation of communication

protocols using CPU’s or GPU’s are rapidly being

adopted in digital communication system designs. In this

paper we have described a software design that

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-5, Oct- 2014]

ISSN: 2349-6495

Page | 5

implements parallel processing of LDPC decoding

algorithm. The decoding algorithm is implemented

(simulated) using combination of MATLAB, C and

OpenMP platform to achieve both flexibility and high

performance. Specifically, using of OpenMP for

parallelizing software on a multi-core processor. Test

results shows that parallel software implementation of

LDPC algorithms reduces the execution time thus

speeding up of data processing and thereby increasing the

throughput of the data.

REFERENCES
[1] R. G. Gallager, “Low-density Parity-check Codes,”

M.I.T.Press, Cambridge, Massachusetts, 1963.

[2] D. J. MacKay and R. M. Neal, “Near Shannon Limit

Performance of Low Density Parity Check Codes,” Elect.

Lett., vol. 32, pp. 1645–1646, July, 1996.

[3] Chung, S., Forney, G., Richardson, T., and Urbanke, R.

(2001), “On the Design of Low-Density Parity-Check Codes

within 0.0045 dB of the Shannon Limit”, IEEE

Communications Letters, 5(2):58–60.

[4] J. Chen and M.P.C. Fossorier, “Near Optimum Universal

Belief Propagation Based Decoding of Low-Density Parity

Check Codes,” IEEE Trans. Comm., vol. 50, no. 3, pp. 406-

414, Mar. 2002.

[5] S. Seo, T. Mudge, Y. Zhu, and C. Chakrabarti, “Design and

Analysis of LDPC Decoders for Software Defined Radio,”

Proc. IEEE Workshop Signal Processing Systems, pp. 210-

215, Oct. 2007.

[6] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP:

Portable Shared Memory Parallel Programming. The MIT

Press, 2008.

[7] Akinori Ohhashi and Tomoaki Ohtsuki “Performance

Analysis and Code Design of Low-Density Parity-Check

(LDPC) Coded Space-Time Transmit Diversity (STTD)

System”, IEEE Communications Society, Globecom 2004,

0-7803-8794-5/04/$20.00 © 2004 IEEE, Page 3118-3122.

[8] Hao Zhong and Tong Zhang, “Block-LDPC: A Practical

LDPC Coding System Design Approach”, IEEE

Transactions on Circuits and Systems -I: Regular Papers,

VOL. 52, NO. 4, APRIL 2005.

[9] Ningde Xie, Tong Zhang, and Erich F. Haratsch, “Improving

Burst Error Tolerance of LDPC-Centric Coding Systems in

Read Channel”, IEEE Transactions on Magnetics, VOL. 46,

NO. 3, March 2010.

[10] Alireza Rabbani Abolfazli, Yousef R. Shayan and

Glenn E.R. Cowan, “TS-LDPC Analog Decoding Based on

the Min-Sum Algorithm”, 26th Biennial Symposium on

Communications (QBSC) 978-1-4673-1114-4/12/$31.00

©2012 IEEE.

[11] Chi H. Chan and Francis C. M. Lau, “Parallel

decoding of LDPC convolutional codes using OpenMP and

GPU”, 2012 IEEE Symposium on Computers and

Communications (ISCC),978-1-4673-2713-8/12/$31.00

©2012 IEEE

[12] A. J. FelstrLom and K. S. Zigangirov, “Time-varying

periodic convolutional codes with low-density parity-check

matrix,” IEEE Trans. On Inform. Theory, vol. 45, no. 6, pp.

2181-2191, Sep. 1999.

[13] Xin-Ru Lee, Chih-Lung Chen, Hsie-Chia Chang, and

Chen-Yi Lee, “Stochastic Decoding for LDPC

Convolutional Codes”, 2012 IEEE International

Symposium on Circuits and Systems (ISCAS) DOI:

10.1109/ISCAS.2012.6271843.

